Category: Publications

  • The Influence of Spatial Configuration of Residential Area and Vector Populations on Dengue Incidence Patterns in an Individual-Level Transmission Model

    Kang JY, Aldstadt J

    Int J Environ Res Public Health 2017 Jul;14(7)

    PMID: 28714879

    Abstract

    Dengue is a mosquito-borne infectious disease that is endemic in tropical and subtropical countries. Many individual-level simulation models have been developed to test hypotheses about dengue virus transmission. Often these efforts assume that human host and mosquito vector populations are randomly or uniformly distributed in the environment. Although, the movement of mosquitoes is affected by spatial configuration of buildings and mosquito populations are highly clustered in key buildings, little research has focused on the influence of the local built environment in dengue transmission models. We developed an agent-based model of dengue transmission in a village setting to test the importance of using realistic environments in individual-level models of dengue transmission. The results from one-way ANOVA analysis of simulations indicated that the differences between scenarios in terms of infection rates as well as serotype-specific dominance are statistically significant. Specifically, the infection rates in scenarios of a realistic environment are more variable than those of a synthetic spatial configuration. With respect to dengue serotype-specific cases, we found that a single dengue serotype is more often dominant in realistic environments than in synthetic environments. An agent-based approach allows a fine-scaled analysis of simulated dengue incidence patterns. The results provide a better understanding of the influence of spatial heterogeneity on dengue transmission at a local scale.

  • Immune-mediated cytokine storm and its role in severe dengue

    Srikiatkhachorn A, Mathew A, Rothman AL

    Semin Immunopathol 2017 Jul;39(5):563-574

    PMID: 28401256

    Abstract

    Dengue remains one of the most important mosquito-borne diseases worldwide. Infection with one of the serologically related dengue viruses (DENVs) can lead to a wide range of clinical manifestations and severity. Severe dengue is characterized by plasma leakage and abnormal bleeding that can lead to shock and death. There is currently no specific treatment for severe dengue due to gaps in understanding of the underlying mechanisms. The transient period of vascular leakage is usually followed by a rapid recovery and is suggestive of the effects of short-lived biological mediators. Both the innate and the adaptive immune systems are activated in severe dengue and contribute to the cytokine production. We discuss the immunological events elicited during a DENV infection and identify candidate cytokines that may play a key role in the severe manifestations of dengue and possible interventions.

  • State-of-the-art monitoring in treatment of dengue shock syndrome: a case series

    Moulton SL, Mulligan J, Srikiatkhachorn A, Kalayanarooj S, Grudic GZ, Green S, Gibbons RV, Muniz GW, Hinojosa-Laborde C, Rothman AL, Thomas SJ, Convertino VA

    J Med Case Rep 2016 Aug;10(1):233

    PMID: 27553703

    Abstract

    BACKGROUND: Early recognition and treatment of circulatory volume loss is essential in the clinical management of dengue viral infection. We hypothesized that a novel computational algorithm, originally developed for noninvasive monitoring of blood loss in combat casualties, could: (1) indicate the central volume status of children with dengue during the early stages of “shock”; and (2) track fluid resuscitation status.

    METHODS: Continuous noninvasive photoplethysmographic waveforms were collected over a 5-month period from three children of Thai ethnicity with clinical suspicion of dengue. Waveform data were processed by the algorithm to calculate each child’s Compensatory Reserve Index, where 1 represents supine normovolemia and 0 represents the circulatory volume at which hemodynamic decompensation occurs. Values between 1 and 0 indicate the proportion of reserve remaining before hemodynamic decompensation.

    RESULTS: This case report describes a 7-year-old Thai boy, another 7-year-old Thai boy, and a 9-year-old Thai boy who exhibited signs and symptoms of dengue shock syndrome; all the children had secondary dengue virus infections, documented by serology and reverse transcriptase polymerase chain reaction. The three boys experienced substantial plasma leakage demonstrated by pleural effusion index >25, ascites, and >20 % hemoconcentration. They received fluid administered intravenously; one received a blood transfusion. All three boys showed a significantly low initial Compensatory Reserve Index (≥0.20), indicating a clinical diagnosis of “near shock”. Following 5 days with fluid resuscitation treatment, their Compensatory Reserve Index increased towards “normovolemia” (that is, Compensatory Reserve Index >0.75).

    CONCLUSIONS: The results from these cases demonstrate a new variation in the diagnostic capability to manage patients with dengue shock syndrome. The findings shed new light on a method that can avoid possible adverse effects of shock by noninvasive measurement of a patient’s compensatory reserve rather than standard vital signs or invasive diagnostic methods.

  • Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions

    Woda M, Friberg H, Currier JR, Srikiatkhachorn A, Macareo LR, Green S, Jarman RG, Rothman AL, Mathew A

    J. Infect. Dis. 2016 Oct;214(7):1001-9

    PMID: 27443614

    Abstract

    BACKGROUND: The development of reagents to identify and characterize antigen-specific B cells has been challenging.

    METHODS: We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals.

    RESULTS: In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection.

    CONCLUSIONS: AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination.

  • Dengue Virus (DENV) Neutralizing Antibody Kinetics in Children After Symptomatic Primary and Postprimary DENV Infection

    Clapham HE, Rodriguez-Barraquer I, Azman AS, Althouse BM, Salje H, Gibbons RV, Rothman AL, Jarman RG, Nisalak A, Thaisomboonsuk B, Kalayanarooj S, Nimmannitya S, Vaughn DW, Green S, Yoon IK, Cummings DA

    J. Infect. Dis. 2016 May;213(9):1428-35

    PMID: 26704615

    Abstract

    The immune response to dengue virus (DENV) infection is complex and not fully understood. Using longitudinal data from 181 children with dengue in Thailand who were followed for up to 3 years, we describe neutralizing antibody kinetics following symptomatic DENV infection. We observed that antibody titers varied by serotype, homotypic vs heterotypic responses, and primary versus postprimary infections. The rates of change in antibody titers over time varied between primary and postprimary responses. For primary infections, titers increased from convalescence to 6 months. By comparing homotypic and heterotypic antibody titers, we saw an increase in type specificity from convalescence to 6 months for primary DENV3 infections but not primary DENV1 infections. In postprimary cases, there was a decrease in titers from convalescence up until 6 months after infection. Beginning 1 year after both primary and postprimary infections, there was evidence of increasing antibody titers, with greater increases in children with lower titers, suggesting that antibody titers were boosted due to infection and that higher levels of neutralizing antibody may be more likely to confer a sterilizing immune response. These findings may help to model virus transmission dynamics and provide baseline data to support the development of vaccines and therapeutics.