Next-generation sequencing of 11 HLA loci in a large dengue vaccine cohort from the Philippines

Geretz A, Cofer L, Ehrenberg PK, Currier JR, Yoon IK, Alera MTP, Jarman R, Rothman AL, Thomas R

Hum. Immunol. 2020 Aug;81(8):437-444

PMID: 32654962

Abstract

HLA genotyping by next-generation sequencing (NGS) has evolved with significant advancements in the last decade. Here we describe full-length HLA genotyping of 11 loci in 612 individuals comprising a dengue vaccine cohort from Cebu province in the Philippines. The multi-locus individual tagging NGS (MIT-NGS) method that we developed initially for genotyping 4-6 loci in one MiSeq run was expanded to 11 loci including HLA-A, B, C, DPA1, DPB1, DQA1, DQB1, DRB1, and DRB3/4/5. This change did not affect the overall coverage or depth of the sequencing reads. HLA alleles with frequencies greater than 10% were A*11:01:01, A*24:02:01, A*24:07:01, A*34:01:01, B*38:02:01, B*15:35, B*35:05:01, C*07:02:01, C*04:01:01, DPA1*02:02:02, DPB1*05:01:01, DPB1*01:01:01, DQA1*01:02:01, DQA1*06:01:01, DQB1*05:02:01, DQB1*03:01:01, DRB1*15:02:01, DRB1*12:02:01, DRB3*03:01:03, DRB4*01:03:01, and DRB5*01:01:01. Improvements in sequencing library preparation provide uniform and even coverage across all exons and introns. This has led to a marked reduction in allele imbalance and dropout. Furthermore, including more loci, such as DRB3/4/5, decreases cross-mapping and incorrect allele assignment at the DRB1 locus. The increased number of loci sequenced for each sample does not reduce the number of samples that can be multiplexed on a single MiSeq run and is therefore more cost-efficient. We believe that such improvements will help HLA genotyping by NGS to gain momentum over other conventional methods by increasing confidence in the calls.